Arsenic (III) adsorption on iron acetate coated activated alumina: thermodynamic, kinetics and equilibrium approach

نویسندگان

  • Bodhaditya Das
  • Rashmi Rekha Devi
  • Iohborlang M Umlong
  • Kusum Borah
  • Saumen Banerjee
  • Anup Kr Talukdar
چکیده

The adsorption potential of iron acetate coated activated alumina (IACAA) for removal of arsenic [As (III)] as arsenite by batch sorption technique is described. IACAA was characterized by XRD, FTIR, EDAX and SEM instruments. Percentage adsorption on IACAA was determined as a function of pH, contact time and adsorbent dose. The study revealed that the removal of As (III) was best achieved at pH =7.4. The initial As (III) concentration (0.45 mg/L) came down to less than 0.01 mg/L at contact time 90 min with adsorbent dose of 1 g/100 mL. The sorption was reasonably explained with Langmuir and Freundlich isotherms. The thermodynamic parameters such as ΔG0, ΔH0, ΔS0 and Ea were calculated in order to understand the nature of sorption process. The sorption process was found to be controlled by pseudo-second order and intraparticle diffusion models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arsenic Removal from Water Samples ‎Using CeO2/Fe2O3 Nanocomposite

   In the present study, CeO2/Fe2O3 nanocomposite was prepared by co-precipitation method and its application was investigated for arsenic removal from water. Characterization of the nano sized adsorbent particles was carried out using SEM and XRD techniques. Systemic adsorption experiments were performed in batch systems and the optimum conditions were obtained. The effects of p...

متن کامل

Simultaneous treatment of both As(III) and As(V) with Iron-Coated Sand (ICS) and Manganese-Coated Sand (MCS)

From the natural geochemical process and anthropogenic activities such as mining wastes, petroleum refining, and agricultural chemicals, surface and groundwater are widely contaminated with arsenic (Bhumbla and Keefer, 1994). Inorganic arsenic is commonly present as arsenite and arsenate depending on the aquatic redox systems. In anoxic systems such as groundwater, the stable form of arsenic is...

متن کامل

Arsenic Adsorption from Aqueous Solutions on an Fe(III)-Si Binary Oxide Adsorbent

This study investigated arsenate and arsenite adsorption on an iron(III) oxide/silica adsorbent that had a Fe/Si molar ratio of 3. Batch experiments were conducted with regard to adsorption kinetics, isotherms, pH effects and interference of phosphate and sulfate on arsenic adsorption. The adsorption of arsenite was faster than that of arsenate. The adsorption kinetics could be well described b...

متن کامل

Mechanisms of arsenate adsorption by highly-ordered nano-structured silicate media impregnated with metal oxides.

The highly ordered mesoporous silica media, SBA-15, was synthesized and incorporated with iron, aluminum, and zinc oxides using an incipientwetness impregnation technique. Adsorption capacities and kinetics of metal-impregnated SBA-15 were compared with activated alumina which is widely used for arsenic removal. Media impregnated with 10% of aluminum by weight (designated to Al10SBA-15) had 1.9...

متن کامل

Enhanced Removal of Trihalomethanes(THMs) from Aqueous Solutions Using Activated Carbon from Walnut Wood(WC) on Equilibrium, Thermodynamic and Kinetics

In this study, carbon was made from walnut wood as a low-cost and non-toxicnatural adsorbent.Walnut wood(WC), were successfully synthesized by an in chemical vapor deposition methodthen characterized using FT-IR techniques and used for the removal of trihalomethanes(THMs) from aqueous solution. The trihalomethanes(THMs) removal by the developed adsorbent was investigated using batch adsorption ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2013